FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions
نویسندگان
چکیده
Guanine-nucleotide dissociation inhibitors (GDIs) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor, GDI.Cdc42 FLARE, in which Cdc42 is modified with a fluorescence resonance energy transfer (FRET) 'binding antenna' that selectively reports Cdc42 binding to endogenous GDIs. Similar antennae could also report GDI-Rac1 and GDI-RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI-Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed remarkably tight coordination of GTPase release and activation on a time scale of 10 s, suggesting that GDI-Cdc42 interactions are a critical component of the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.
منابع مشابه
Dual observation of the ATP-evoked small GTPase activation and Ca2+ transient in astrocytes using a dark red fluorescent protein
Intracellular signal transduction involves a number of biochemical reactions, which largely consist of protein-protein interactions and protein conformational changes. Monitoring Förster resonance energy transfer (FRET) by fluorescence lifetime imaging microscopy (FLIM), called FLIM-FRET, is one of the best ways to visualize such protein dynamics. Here, we attempted to apply dark red fluorescen...
متن کاملGDI-Mediated Cell Polarization in Yeast Provides Precise Spatial and Temporal Control of Cdc42 Signaling
Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast Saccharomyces cerevisiae under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding o...
متن کاملSpontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking
The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which dem...
متن کاملComputational Analysis of Rho GTPase Cycling
The Rho family of GTPases control actin organization during diverse cellular responses (migration, cytokinesis and endocytosis). Although the primary members of this family (RhoA, Rac and Cdc42) have different downstream effects on actin remodeling, the basic mechanism involves targeting to the plasma membrane and activation by GTP binding. Our hypothesis is that the details of GTPase cycling b...
متن کاملRho GTPase isoforms in cell motility: Don't fret, we have FRET
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility proces...
متن کامل